BAB II : Komponen Materi

Komponen-komponen materi

a. Atom

Dunia Kimia berdasarkan teori atom, satuan terkecil materi adalah atom. Materi didefinisikan sebagai kumpulan atom. Atom adalah komponen terkecil unsure yang tidak akan mengalami perubahan dalam reaksi Kimia. Semua atom terdiri atas komponen yang sama, sebuah inti dan electron. Diameter inti sekitar 10–15-10–14 m, yakni sekitar 1/10 000 besarnya atom. Lebih dari 99 % massa atom terkonsentrasi di inti. Inti terdiri atas proton dan neutron, dan jumlahnya menentukan sifat unsur.

Massa proton sekitar 1,67 x 10–27 kg dan memiliki muatan positif, 1,60 x 10–19 C (Coulomb). Muatan ini adalah satuan muatan listrik terkecil dan disebut muatan listrik elementer. Inti memiliki muatan listrik positif yang jumlahnya bergantung pada jumlah proton yang dikandungnya. Massa neutron hampir sama dengan massa proton, tetapi neutron tidak memiliki muatan listrik. Elektron adalah partikel dengan satuan muatan negatif, dan suatu atom tertentu mengandung sejumlah elektron yang sama dengan jumlah proton yang ada di inti atomnya. Jadi atom secara listrik bermuatan netral. Sifat partikel-partikel yang menyusun atom dirangkumkan di Tabel 1.1.

Tabel 1.1 Sifat partikel penyusun atom.

massa (kg) Massa relatif Muatan listrik (C)
proton 1,672623×10-27 1836 1,602189×10-19
neutron 1,674929×10-27 1839 0
elektron 9,109390×10-31 1 -1,602189×10-19

Jumlah proton dalam inti disebut nomor atom dan jumah proton dan neutron disebut nomor massa. Karena massa proton dan neutron hampir sama dan massa elektron dapat diabaikan dibandingkan massa neutron dan proton, massa suatu atom hampir sama dengan nomor massanya.

Bila nomor atom dan nomor massa suatu atom tertentu dinyatakan, nomor atom ditambahkan di kiri bawah symbol atom sebagai subscript, dan nomor massa di kiri atas sebagai superscript. Misalnya untuk atom karbon dinyatakan sebagai 126 C karena nomor atom adalah 6 dan nomor massanya adalah 12. Kadang hanya nomor massanya yang dituliskan, jadi sebagai 12C.

Jumlah proton dan elektron yang dimiliki oleh unsure menentukan sifat Kimia unsure. Jumlah neutron mungkin bervariasi. Suatu unsure tertentu akan selalu memiliki nomor atom yang sama tetapi mungkin memiliki jumlah neutron yang berbeda-beda. Varian-varian ini disebut isotop. Sebagai contoh hydrogen memiliki isotop yang dituliskan di tabel berikut.

Tabel 1.2 Isotop-isotop hidrogen

simbol dan nama jumlah proton Jumlah neutron

1H hidrogen 1 0

2H deuterium, D 1

1 3H tritium, T 1 2

Banyak unsur yang ada alami di alam memiliki isotop-isotop. Beberapa memiliki lebih dari dua isotop. Sifat kimia isotop sangat mirip, hanya nomor massanya yang berbeda.

b. Molekul

Komponen independen netral terkecil materi disebut molekul. Molekul monoatomik terdiri datu atom (misalnya, Ne). Molekul poliatomik terdiri lebih banyak atom (misalnya, CO2). Jenis ikatan antar atom dalam molekul poliatomik disebut ikatan kovalen (lihat bab 3.2(b)).

Salah satu alasan mengapa mengapa diperlukan waktu yang lama sampai teori atom diterima dengan penuh adalah sebagai berikut. Dalam teorinya Dalton menerima keberadaan molekul (dalam terminologi modern) yang dibentuk oleh kombinasi atom yang berbeda-beda, tetapi ia tidak tidak menerima ide molekul diatomik untuk unsur seperti oksigen, hidrogen atau nitrogen yang telah diteliti dengan intensif waktu itu. Dalton percaya pada apa yang disebut “prinsip tersederhana”4 dan berdasarkan prinsip ini, ia secara otomatis mengasumsikan bahwa unsur seperti hidrogen dan oksigen adalah monoatomik.

Kimiawan Perancis Joseph Louis Gay-Lussac (1778-1850) mengusulkan hukum reaksi gas yang menyatakan bahwa dalam reaksi gas, perbandingan volume adalah bilangan bulat. Teori atom Dalton tidak memberikan rasional hukum ini. Di tahun 1811, kimiawan Italia Amedeo Avogadro (1776-1856) mengusulkan unsur gas seperti hidrogen dan oksigen yang bukan monoatomik tetapi diatomik. Lebih lanjut, ia juga mengusulkan bahwa pada temperatur dan tekanan tetap, semua gas dalam volume tertentu mengandung jumlah partikel yang sama. Hipotesis ini awalnya disebut hipotesis Avogadro, tetapi kemudian disebut hukum Avogadro.

Hukum Avogadro memberikan dasar penentuan massa atom relatif, yakni massa atom (secara nal disebut berat atom). Pentingnya massa atom ini lambat disadari. Kimiawan Italia Stanislao Cannizzaro (1826-1910) menyadari pentingnya hipotesis Avogadro dan validitasnya di International Chemical Congress yang diselenggarakan di Karlsruhe, Germany, di tahun 1860, yang diadakan utuk mendiskusikan kesepakatan internasional untuk standar massa atom. Sejak itu, validitas hipotesis Avogadro secara perlahan diterima.

c. Ion

Atom atau kelompok atom yang memiliki muatan listrik disebut ion. Kation adalah ion yang memiliki muatan positif, anion memiliki muatan negatif. Tarikan listrik akan timbul antara kation dan anion. Dalam kristal natrium khlorida (NaCl), ion natrium (Na+) dan ion khlorida (Cl¯) diikat dengan tarikan listrik. Jenis ikatan ini disebut ikatan ion (lihat bab3.2 (a)).

BAB III : Stoikiometri

Stoikiometri

a. Tahap awal stoikiometri

Di awal kimia, aspek kuantitatif perubahan kimia, yakni stoikiometri reaksi kimia, tidak mendapat banyak perhatian. Bahkan saat perhatian telah diberikan, teknik dan alat percobaan tidak menghasilkan hasil yang benar.

Salah satu contoh melibatkan teori flogiston. Flogistonis mencoba menjelaskan fenomena pembakaran dengan istilah “zat dapat terbakar”. Menurut para flogitonis, pembakaran adalah pelepasan zat dapat etrbakar (dari zat yang terbakar). Zat ini yang kemudian disebut ”flogiston”. Berdasarkan teori ini, mereka mendefinisikan pembakaran sebagai pelepasan flogiston dari zat terbakar. Perubahan massa kayu bila terbakar cocok dengan baik dengan teori ini. Namun, perubahan massa logam ketika dikalsinasi tidak cocok dengan teori ini. Walaupun demikian flogistonis menerima bahwa kedua proses tersebut pada dasarnya identik. Peningkatan massa logam terkalsinasi adalah merupakan fakta. Flogistonis berusaha menjelaskan anomali ini dengan menyatakan bahwa flogiston bermassa negatif.

Filsuf dari Flanders Jan Baptista van Helmont (1579-1644) melakukan percobaan “willow” yang terkenal. Ia menumbuhkan bibit willow setelah mengukur massa pot bunga dan tanahnya. Karena tidak ada perubahan massa pot bunga dan tanah saat benihnya tumbuh, ia menganggap bahwa massa yang didapatkan hanya karena air yang masuk ke bijih. Ia menyimpulkan bahwa “akar semua materi adalah air”. Berdasarkan pandangan saat ini, hipotesis dan percobaannya jauh dari sempurna, tetapi teorinya adalah contoh yang baik dari sikap aspek kimia kuantitatif yang sedang tumbuh. Helmont mengenali pentingnya stoikiometri, dan jelas mendahului zamannya.

Di akhir abad 18, kimiawan Jerman Jeremias Benjamin Richter (1762-1807) menemukan konsep ekuivalen (dalam istilah kimia modern ekuivalen kimia) dengan pengamatan teliti reaksi asam/basa, yakni hubungan kuantitatif antara asam dan basa dalam reaksi netralisasi. Ekuivalen Richter, atau yang sekarang disebut ekuivalen kimia, mengindikasikan sejumlah tertentu materi dalam reaksi. Satu ekuivalen dalam netralisasi berkaitan dengan hubungan antara sejumlah asam dan sejumlah basa untuk mentralkannya. Pengetahuan yang tepat tentang ekuivalen sangat penting untuk menghasilkan sabun dan serbuk mesiu yang baik. Jadi, pengetahuan seperti ini sangat penting secara praktis.

Pada saat yang sama Lavoisier menetapkan hukum kekekalan massa, dan memberikan dasar konsep ekuivalen dengan percobaannya yang akurat dan kreatif. Jadi, stoikiometri yang menangani aspek kuantitatif reaksi kimia menjadi metodologi dasar kimia. Semua hukum fundamental kimia, dari hukum kekekalan massa, hukum perbandingan tetap sampai hukum reaksi gas semua didasarkan stoikiometri. Hukum-hukum fundamental ini merupakan dasar teori atom, dan secara konsisten dijelaskan dengan teori atom. Namun, menarik untuk dicatat bahwa, konsep ekuivalen digunakan sebelum teori atom dikenalkan.

b. Massa atom relatif dan massa atom

Dalton mengenali bahwa penting untuk menentukan massa setiap atom karena massanya bervariasi untuk setiap jenis atom. Atom sangat kecil sehingga tidak mungkin menentukan massa satu atom. Maka ia memfokuskan pada nilai relatif massa dan membuat tabel massa atom (gambar 1.3) untuk pertamakalinya dalam sejarah manusia. Dalam tabelnya, massa unsur teringan, hidrogen ditetapkannya satu sebagai standar (H = 1). Massa atom adalah nilai relatif, artinya suatu rasio tanpa dimensi. Walaupun beberapa massa atomnya berbeda dengan nilai modern, sebagian besar nilai-nilai yang diusulkannya dalam rentang kecocokan dengan nilai saat ini. Hal ini menunjukkan bahwa ide dan percobaannya benar.

Kemudian kimiawan Swedia Jons Jakob Baron Berzelius (1779-1848) menentukan massa atom dengan oksigen sebagai standar (O = 100). Karena Berzelius mendapatkan nilai ini berdasarkan analisis oksida, ia mempunyai alasan yang jelas untuk memilih oksigen sebagai standar. Namun, standar hidrogen jelas lebih unggul dalam hal kesederhanaannya. Kini, setelah banyak diskusi dan modifikasi, standar karbon digunakan. Dalam metoda ini, massa karbon 12C dengan 6 proton dan 6 neutron didefinisikan sebagai 12,0000. Massa atom dari suatu atom adalah massa relatif pada standar ini. Walaupun karbon telah dinyatakan sebagai standar, sebenarnya cara ini dapat dianggap sebagai standar hidrogen yang dimodifikasi.

d. Kuantitas materi dan mol

Metoda kuantitatif yang paling cocok untuk mengungkapkan jumlah materi adalah jumlah partikel seperti atom, molekul yang menyusun materi yang sedang dibahas. Namun, untuk menghitung partikel atom atau molekul yang sangat kecil dan tidak dapat dilihat sangat sukar. Alih-alih menghitung jumlah partikel secara langsung jumlah partikel, kita dapat menggunakan massa sejumlah tertentu partikel. Kemudian, bagaimana sejumlah tertentu bilangan dipilih? Untuk

menyingkat cerita, jumlah partikel dalam 22,4 L gas pada STP (0℃, 1atm) dipilih sebagai jumlah standar. Bilangan ini disebut dengan bilangan Avogadro. Nama bilangan Loschmidt juga diusulkan untuk menghormati kimiawan Austria Joseph Loschmidt (1821-1895) yang pertama kali dengan percobaan (1865).

Sejak 1962, menurut SI (Systeme Internationale) diputuskan bahwam dalam dunia kimia, mol digunakan sebagai satuan jumlah materi. Bilangan Avogadro didefinisikan jumlah atom karbon dalam 12 g 126C dan dinamakan ulang konstanta Avogadro.

Ada beberapa definisi “mol”:

(i) Jumlah materi yang mengandung sejumlah partikel yang terkandung dalam 12 g 12C. (ii) satu mol materi yang mengandung sejumlah konstanta Avogadro partikel.

(iii) Sejumlah materi yang mengandung 6,02 x 1023 partikel dalam satu mol.

e. Satuan massa atom (sma)

Karena standar massa atom dalam sistem Dalton adalah massa hidrogen, standar massa dalam SI tepat 1/12 massa 12C. Nilai ini disebut dengan satuan massa atom (sma) dan sama dengan 1,6605402 x 10–27 kg dan D (Dalton) digunakan sebagai simbolnya. Massa atom didefinisikan sebagai rasio rata-rata sma unsur dengan distribusi isotop alaminya dengan 1/12 sma 12C.

BAB IV : Penemuan elektron

Penemuan elektron

2.1 Penemuan elektron

Menurut Dalton dan ilmuwan sebelumnya, atom tak terbagi, dan merupakan komponen mikroskopik utama materi. Jadi, tidak ada seorangpun ilmuwan sebelum abad 19 menganggap atom memiliki struktur, atau dengan kata lain, atom juga memiliki konponen yang lebih kecil. Keyakinan bahwa atom tak terbagi mulai goyah akibat perkembangan pengetahuan hubungan materi dan kelistrikan yang berkembang lebih lanjut. Anda dapat mempelajari perkembangan kronologis pemahaman hubungan antara materi dan listrik.

Tabel 2.1 Kemajuan pemahaman hubungan materi dan listrik.

Tahun Peristiwa
1800 Penemuan baterai (Volta)
1807 isolasi Na dan Ca dengan elektrolisis (Davy)
1833 Penemuan hukum elektrolisis (Faraday)
1859 Penemuan sinar katoda (Plücker)
1874 Penamaan elektron (Stoney)
1887 Teori ionisasi (Arrhenius)
1895 Penemuan sinar-X (Röntgen)
1897 Bukti keberadaan elektron (Thomson)
1899 Penentuan e/m (Thomson)
1909-13 Percobaan tetes minyak (Millikan)

Faraday memberikan kontribusi yang sangat penting, ia menemukan bahwa jumlah zat yang dihasilkan di elektroda-elektroda saat elektrolisis (perubahan kimia ketika arus listrik melewat larutan elektrolit) sebanding dengan jumlah arus listrik. Ia juga menemukan di tahun 1833 bahwa jumlah listrik yang diperlukan untuk menghasilkan 1 mol zat di elektroda adalah tetap (96,500 C). Hubungan ini dirangkumkan sebagai hukum elektrolisis Faraday.

Faraday sendiri tidak bermaksud menggabungkan hukum ini dengan teori atom. Namun, kimiawan Irish George Johnstone Stoney (1826-1911) memiliki wawasan sehingga mengenali pentingnya hukum Faraday pada struktur materi; ia menyimpulkan bahwa terdapat satuan dasar dalam elektrolisis, dengan kata lain ada analog atom untuk kelistrikan. Ia memberi nama elektron pada satuan hipotetik ini.

Kemudian muncul penemuan menarik dari percobaan tabung vakum. Bila kation mengenai anoda bila diberikan beda potensial yang tinggi pada tekanan rendah (lebih rendah dari 10-2 – 10-4 Torr)), gas dalam tabung, walaupun merupakan insulator, menjadi penghantar dan memancarkan cahaya. Bila vakumnya ditingkatkan, dindingnya mulai menjadi mengkilap, memancarkan cahaya fluoresensi (Gambar 2.1). Fisikawan Jerman Julius Plücker (1801-1868) berminat pada fenomena ini dan menginterpreatsinya sebagai beikut: beberapa partikel dipancarkan dari katoda. Ia memmebri nama sinar katoda pada partikel yang belum teridentifikasi ini (1859).

Torr adalah satuan tekanan yang sering digunakan untuk mendeskripsikan tingkat vakum. (1 Torr = 133, 3224 Pa)

Patikel yang belum teridentifikasi ini, setelah dipancarakan dari katoda, akan menuju dinding atbung atau anoda. Ditemukan bahwa partikel tersebut bermuatan karena lintasan geraknya akan dibelokkan bila medan magnet diberikan. Lebih lanjut, sifat cahaya tidak bergantung jenis logam yang digunakan dalam tabung katoda, maupun jenis gas dalam tabung pelucut ini. Fakta-fakta ini menyarankan kemungkinan bahwa partikel ini merupakan bahan dasar materi.

Fisikawan Inggris Joseph John Thomson (1856-1940) menunjukkan bahwa partikel ini bermuatan negatif. Ia lebih lanjut menentukan massa dan muatan partikel dengan memperkirakan efek medan magnet dan listrik pada gerakan partikel ini. Ia mendapatkan rasio massa dan muatannya. Untuk mendapatkan nilai absolutnya, salah satu dari dua tersebut harus ditentukan.

Fisikawan Amerika Robert Andrew Millikan (1868-1953) berhasil membuktikan dengan percobaan yang cerdas adanya partikel kelistrikan ini. Percobaan yang disebut dengan percobaan tetes minyak Millikan. Tetesan minyak dalam tabung jatuh akibat pengaruh gravitasi. Bila tetesan minyak memiliki muatan listrik, gerakannya dapat diatur dengan melawan gravitasi dengan berikan medan listrik. Gerakan gabungan ini dapat dianalisis dengan fisikan klasik. Millikan menunjukkan dengan percobaan ini bahwa muatan tetesan minyak selalu merupaka kelipatan 1,6×10-19 C. Fakta ini berujung pada nilai muatan elektron sebesar 1,6 x 10-19 C.

Rasio muatan/massa partikel bermuatan yang telah diketahui selama ini sekitar 1/1000 (C/g). Ratio yang didapatkan Thomson jauh lebih tinggnilai tersebut (nilai akurat yang diterima adalah 1,76 x108 C/g), dan penemuan ini tidak masuk dalam struktur pengetahuan yang ada saat itu. Partikel ini bukan sejenis ion atau molekul, tetapi harus diangap sebagai bagian atau fragmen atom.

Latihan 2.1 Perhitungan massa elektron.

Hitung massa elektron dengan menggunakan nilai yang didapat Millikan dan Thomson.

Jawab: Anda dapat memperoleh penyelesaian dengan mensubstitusikan nilai yang didapat Millikan pada hubungan: muatan/massa = 1,76 x 108 (C g-1). Maka, m = e/(1,76 x 108 C g-1) = 1,6 x 10-19 C/(1,76 x 108C g-1) = 9,1 x 10-28 g.

Muatan listrik yang dimiliki elektron (muatan listrik dasar) adalah salah satu konstanta universal dan sangat penting.

Latihan 2.2 Rasio massa elektron dan atom hidrogen.

Hitung rasio massa elektron dan atom hidrogen.

Jawab: Massa mH atom hidrogen atom adalah: mH = 1 g/6 x 1023 = 1,67 x 10-24g. Jadi, me : mH = 9,1 x 10-28g : 1,67 x10-24g = 1 : 1,83 x 103.

Sangat menakjubkan bahwa massa elektron sangat kecil. Bahkan atom yang paling ringanpun, hidrogen, sekitar 2000 kali lebih berat dari massa elektron.

soal-soal latihan

Soal-soal latihan

Masa relatif atom

Latihan 2.1 Perhitungan massa elektron.

1. Hitung massa elektron dengan menggunakan nilai yang didapat Millikan dan Thomson.

Jawab: Anda dapat memperoleh penyelesaian dengan mensubstitusikan nilai yang didapat Millikan pada hubungan: muatan/massa = 1,76 x 108 (C g-1). Maka, m = e/(1,76 x 108 C g-1) = 1,6 x 10-19 C/(1,76 x 108C g-1) = 9,1 x 10-28 g.

Latihan 2.2 Rasio massa elektron dan atom hidrogen.

2. Hitung rasio massa elektron dan atom hidrogen.

Jawab: Massa mH atom hidrogen atom adalah: mH = 1 g/6 x 1023 = 1,67 x 10-24g. Jadi, me : mH = 9,1 x 10-28g : 1,67 x10-24g = 1 : 1,83 x 103.

Stoikiometri

3. Soal Latihan 1.1 Perubahan massa atom disebabkan perubahan standar. Hitung massa atom hidrogen dan karbon menurut standar Berzelius (O = 100). Jawablah dengan menggunakan satu tempat desimal.

Jawab.

Massa atom hidrogen = 1 x (100/16) = 6,25 (6,3), massa atom karbon = 12 x (100/16)=75,0

4. Contoh Soal 1.2 Perhitungan massa atom. Hitung massa atom magnesium dengan menggunakan distribsui isotop berikut: 24Mg: 78,70%; 25Mg: 10,13%, 26Mg: 11,17%.

Jawab:

0,7870 x 24 + 0,1013 x 25 +0,1117 x 26 = 18,89+2,533+2,904 = 24,327(amu; lihat bab 1.3(e))

Massa atom Mg = 18,89 + 2,533 + 2,904 =24.327 (amu).

5. Contoh Soal 1.3 Massa molekular mokelul yang mengandung isotop.

Hitung massa molekular air H2O dan air berat D2O (2H2O) dalam bilangan bulat.

Jawab

Massa molekular H2O = 1 x 2 + 16 = 18, massa molekular D2O = (2 x 2) + 16 = 20

Latihan

1.1 Isotop. Karbon alami adalah campuran dua isotop, 98,90(3)% 12C dan 1,10(3)% 13C. Hitung massa atom karbon.

1.1 Jawab. Massa atom karbon = 12 x 0,9890 + 13 x 0,0110 = 12,01(1)

1.2 Konstanta Avogadro. Intan adalah karbon murni. Hitung jumlah atom karbon dalam 1 karat (0,2 g) intan.

1.2 Jawab. Jumlah atom karbon = [0,2 (g)/12,01 (g mol-1)] x 6,022 x 1023(mol-1) = 1,00 x 1022

1.3 Hukum perbandingan berganda. Komposisi tiga oksida nitrogen A, B dan C diuji. Tunjukkan bahwa hasilnya konsisten dengan hukum perbandingan berganda: massa nitrogen yang bereaksi dengan 1 g oksigen dalam tiap oksida: Oksida A: 1,750 g, oksida B: 0,8750 g, oksida C: 0,4375 g.

1.3 Jawab. Bila hukum perbandingan berganda berlaku, rasio massa nitrogen yang terikat pada 1 g oksigen harus merupakan bilangan bulat.

Hasilnya cocok dengan hukum perbandingan berganda.

1.4 Massa atom. Tembaga yang ada di alam dianalisis dengan spektrometer massa. Hasilnya: 63Cu 69,09% 65Cu 30,91%. Hitung massa atom Cu. Massa 63Cu dan 65Cu adalah 62,93 dan 64,93 sma.

1.4 Jawab: Massa atom Cu=62,93x (69,09/100) + 64,93x (30,91/100) = 63,55 (sma)

1.5 Mol. Bila kumbang menyengat korbannya, kumbang akan menyalurkan sekitar 1 mg (1x 10-6 g) isopentil asetat C7H14O2. Senyawa ini adalah komponen fragrant pisang, dan berperan sebagai materi pentransfer informasi untuk memanggil kumbang lain. Berapa banyak molekul dalam 1 mg isopentil asetat?

1.5 Jawab. Massa molekular isopentil asetat adalah M = 7 x 12,01 + 14 x 1,008 + 2 x 16,00 = 130.18 (g mol-1). Jumlah mol: 1,0 x 10-6(g)/130,18(g mol-1) = 7,68 x 10-9(mol) Jumlah molekul 1 mg isopentil asetat: 7,68 x 10-9(mol) x 6,022 x 1023 (mol-1) = 4,6 x1015

1.6 Massa molekul hidrogen. Massa atom hidrogen adalah 1,008. Hitung massa molekul hidrogen.

1.6 Jawab. Massa molar hidrogen adalah 2,016 x 10-3 kg mol-1. Massa satu molekul hidrogen = [2,016 x 10-3 (kg mol-1)]/[6,022 x 1023(mol-1) = 3,35 x 10-27(kg).

Dasar-dasar teori kuantum klasik

6. Latihan 2.4 Jari-jari orbit elektron dalam hidrogen

Turunkan persamaan untuk menentukan jari-jari orbit r elektron dalam atom hidrogen dari persamaan 2.3 dan 2.4. Jelaskan makna persamaan yang anda turunkan.

Jawab: mvr = nh/2π dapat diubah menjadi v = nh/2πmr. Dengan mensubstitusikan ini ke persamaan 2.4, anda akan mendapatkan persamaan: e2/4πε0r2 = mn2h2/4π2m2r3

Jadi r = n2ε0h2/(2π)2me2, n = 1, 2, 3,… (2.5) Persamaan 2.5 menunjukkan batasan bahwa jari-jari elektron diizinkan pada nilai tertentu saja (diskontinyu). Di sini n disebut bilangan kuantum.

7. Latihan 2.5 Energi elektron dalam atom hidrogen.

Dengan menggunakan persamaan 2.3 dan 2.4, turunkan persamaan yang tidak mengandiung suku v untuk mengungkapkan energi elektron dalam atom hidrogen.

Jawab: Persamaan 2.4 dapat diubah menjadi mv2 = e2/4πε0r. Dengan mensubstitusikan persamaan ini kedalam persamaan 2.7, anda dapat mendapatkan persamaan berikut setelah penyusunan ulang:

8. Latihan 2.6 Perkiraan nomor atom (hukum Moseley)

Didapatkan bahwa sinar-X khas unsur yang tidak diketahui adalah 0,14299 x 10-9 m. Panjang gelombang dari deret yang sama sinar-X khas unsur Ir (Z = 77) adalah 0,13485 x 10-9 m. Dengan asumsi s = 7,4, perkirakan nomor atom unsur yang tidak diketahui tersebut.

Jawab: Pertama perkirakan √c dari persamaan (2.1).

[1/0,13485x10-9(m)]1/2= √ c. (77 x 7.4) = 69,6 √c; jadi √c = 1237,27, maka

[1/0,14299x10-9(m)]= 1237 (z x 7.4) dan didapat z = 75

Penumuan componen materi

Soal 2:

1 . komponen materi terdiri atas 3 aspek Atom, molekul dan ion, sebutkan sejarah penemuan teori atom?

2. di dalam inti terdiri atas proton dan neutron, jelaskan secara singkat hingga terbentuknya proton ?

3. jelaskan secara singkat hingga terbentuknya proton ?

4. jenis ikatan antara atom didalam molekul poliatomik disebut ikatan kovalen. Apakah ikatan kovalen itu?

5. jelaskan bagaimana terjadinya ikatan ion?

jawaban :

sejarah penemuan teori atom :

1801 : young mendemonstrasikan sifat- sifat gelombang cahaya.

1888 : hertz menemukan gelombang radio yang di hasilkan oleh muatan listrik yang di percepat.

1900 : rayleigh dan jeans berusaha menghitung energi distribusi untuk radiasi benda hitam, tapi persamaan yang mereks hasilkan menimbulkan “bencana ultraviolet”.

1905 : Einstein beranggapan bahwa gelombang cahaya juga menunjukan perilaku seperti partikel.

1909 : ruterford, geiger dan marsden menunjukan bahwa ketika partikel alfa ditembakan pada lempengan emas tipis sebagian kecil dipantulkan, Rutherford berpendapat bahwa atom mengandung inti kecil bermuatan positif dikelilingi oleh elektron bermuatan negative.

1911 : Rutherford mengusulakn bahwa atom terdri atas atom bermuatan positif dikelilingi oleh electron yang bergerak pada orbit berbentuk lingkaran.

1913 : bohr mengusulkan model untuk atom hydrogen yaitu electron bergerak mengelilingi inti dalam orbit dengan tingkat energi tertentu.

1924 : de borglie beranggapan bahwa semua partikel, termaksud elektron, menunjukkan sifat-sifat partikel sekaligus gelombang.

1926 : persamaan gelombang schrodinger diperkanalkan.

1927 : davission dan germer mencoba menguji teori de broglie.

pada tahun 1987, Goldstein melakukan serangkaian eksperimen denagn mengugunakan tabung sinar katode. Eksperimen itu dilakukan denagn cara memvariasikan katode dari rapat ke renggang. pada saat dibuat rapat, gas dibelakang katode tetap gelap. Akan tetapi, setelah dibuat rennggang( diberi lubang), gas dibelakang katode menjadi berpijar. Hal ini menunjukkan adanya sinar yang menerobos lubang katode hingga gas yang dibelakangnya menjadi berpijar. Sinar itu berasal dari anode dan disebut sinar anode. salah satu sifat sinar anode adalah ukuran partikel sinar anode bergantung pada jenis gas dalam tabung. Ukuruan terkecil terjadi jika dalam tabung menggunakan gas hydrogen. Selanjutnya partikel anode tersebut disebut proton.

penemuan neutron diawali dari eksperimen Rutherford dan dikembangkan oleh J.Chadwick penemuan itu didasarkan pada eksperimennya menembakkan partikel alfa pada lempeng berilium. Eksperimen itu menunjukan bahwa setelah ditembakkan partikel alfa, beilium memancarkan suatu partikel yang berdaya tembus tinggi dan tidak berpengaruh oleh medanlistrik dan medan magnet. Partikel itu oleh Chadwick dinamakan neutron.

ikatan kovalen adalah ikatan yang terjadi karena penggunaan pasangan electron bersama. Pasangan electron itu berasal dari kedua atom yang berikata. Ikatan kovalen cenderung terjadi pada atom nonlogam.

menurut teori Lewis dan Kossel, Ikatan ion terjadi antara ion positif( atom yang melepaskan electron) dan ion negative (atom yang menangkap electron).

Soal 1:

Sebutkan siapa sebenarnya yang menemukan oksigen?

Siapakah yang menemukan kimia modern?

Apakah yang disebut dengan atom adalah entitas abstrak?

Apa yang dimaksud dengan teori atom tetap in hertikal?

Jelaskan pejalanan dari filosofi yunani kuno ke teori atom modern?



Jawab:

1. Sebenarnya oksigen ditemukan secara independen oleh dua kimiawan, kimiawan Inggris Joseph Priestley (1733-1804) dan kimiawan Swedia Carl Wilhelm Scheele (1742-1786), di penghujung abad ke-18. Jadi, hanya sekitar dua ratus tahun sebelum kimia modern lahir. Dengan demikian, kimia merupakan ilmu pengetahuan yang relatif muda bila dibandingkan dengan fisika dan matematika, keduanya telah berkembang beberapa ribu tahun.

2. Kimia modern dimulai oleh kimiawan Perancis Antoine Laurent Lavoisier (1743-1794). Ia menemukan hukum kekekalan massa dalam reaksi kimia, dan mengungkap peran oksigen dalam pembakaran. Berdasarkan prinsip ini, kimia maju di arah yang benar.

3. Atom memiliki bentuk yang khas dengan fungsi yang sesuai dengan bentuknya. ”Atom anggur bulat dan mulus sehingga dapat melewati kerongkongan dengan mulus sementara atom kina kasar dan akan sukar melalui kerongkongan”. Teori struktural modern molekul menyatakan bahwa terdapat hubungan yang sangat dekat antara struktur molekul dan fungsinya.

4. (berlwanan dengan teori yang umum diterima) sebab teori empat unsur (air, tanah, udara dan api) yang diusulkan filsuf Yunani kuno Aristotole (384 BC-322 BC) menguasi.

5. Jalan dari filosofi Yunani kuno ke teori atom modern tidak selalu mulus. Di Yunani kuno, ada perselisihan yang tajam antara teori atom dan penolakan keberadaan atom. Sebenarnya, teori atom tetap tidak ortodoks dalam dunia kimia dan sains. Orang-orang terpelajar tidak tertarik pada teori atom sampai abad ke-18. Di awal abad ke-19, kimiawan Inggris John Dalton (1766-1844) melahirkan ulang teori atom Yunani kuno. Bahkan setelah kelahirannya kembali ini, tidak semua ilmuwan menerima teori atom. Tidak sampai awal abad 20 teori ato, akhirnya dibuktikan sebagai fakta, bukan hanya hipotesis. Hal ini dicapai dengan percobaan yang terampil oleh kimiawan Perancis Jean Baptiste Perrin (1870-1942). Jadi, perlu waktu yang cukup panjang untuk menetapkan dasar kimia modern.

mekanika kuantum

Latihan 2.8 Ketidakpastian posisi elektron.

Anggap anda ingin menentukan posisi elektron sampai nilai sekitar 5 x 10-12 m. Perkirakan ketidakpastian kecepatan pada kondisi ini.

Jawab: Ketidakpastian momentum diperkirakan dengan persamaan (2.13). p = h/x = 6,626 x 10-34 (J s)/5 x 10-12 (m) = 1,33 x 10-22 (J s m-1). Karena massa elektron 9,1065 x 10-31 kg, ketidakpastian kecepatannya v akan benilai: v = 1,33 x 10-22(J s m-1) / 9,10938 x 10-31 (kg) = 1,46 x 108 (m s-1).

Latihan 2.9 Jumlah orbital yang mungkin.

Berapa banyak orbital yang mungkin bila n = 3. Tunjukkan kumpulan bilangan kuantumnya sebagaimana yang telah dilakukan di atas.

Jawab: Penghitungan yang sama dimungkinkan untuk kumpulan ini (n = 3, l = 0) dan (n = 3, l = 1). Selain itu, ada lima orbital yang betkaitan dengan (n =3, l =2). Jadi, (n = 3, l = 0), (n = 3, l = 1, m = -1), (n =3, l = 1, m =0), (n =3, l = 1, m = +1) 〠(n =3, l =2, m = -2), (n =3, l = 2, m = -1), (n = 3, l = 2, m = 0), (n = 3, l = 2,m =+1), (n = 3, l = 2, m = +2). Semuanya ada 9 orbital.

BAB VI : Dasar-dasar teori kuantum klasik

Dasar-dasar teori kuantum klasik

2.3 Dasar-dasar teori kuantum klasik

a. Spektrum atom

Bila logam atau senyawanya dipanaskan di pembakar, warna khas logam akan muncul. Ini yang dikenal dengan reaksi nyala. Bila warna ini dipisahkan dengan prisma, beberapa garis spektra akan muncul, dan panjang gelombang setiap garis khas untuk logam yang digunakan. Misalnya, garis kuning natrium berkaitan dengan dua garis kuning dalam spektrumnya dalam daerah sinar tampak, dan panjang gelombang kedua garis ini adalah 5,890 x 10-7 m dan 5,896 x 10-7 m.

Bila gas ada dalam tabung vakum, dan diberi beda potensial tinggi, gas akan terlucuti dan memancarkan cahaya. Pemisahan cahaya yang dihasilkan dengan prisma akan menghasilkan garisspektra garis diskontinyu. Karena panjang gelombang cahaya khas bagi atom, spektrum ini disebut dengan spektrum atom.

Fisikawan Swiss Johann Jakob Balmer (1825-1898) memisahkan cahaya yang diemisikan oleh hidrogen bertekanan rendah. Ia mengenali bahwa panjang gelombang λ deretan garis spektra ini dapat dengan akurat diungkapkan dalam persamaan sederhana (1885). Fisikawan Swedia Johannes Robert Rydberg (1854-1919) menemukan bahwa bilangan gelombang σ garis spektra dapat diungkapkan dengan persamaan berikut (1889).

σ = 1/ λ = R{ (1/ni2 ) -(1/nj2 ) }cm-1 … (2.1)

Jumlah gelombang dalam satuan panjang (misalnya, per 1 cm)

ni dan nj bilangan positif bulat(ni <>j) dan R adalah tetapan khas untuk gas yang digunakan. Untuk hidrogen R bernilai 1,09678 x 107 m-1.

Umumnya bilangan gelombang garis spektra atom hodrogen dapat diungkapkan sebagai perbedaan dua suku R/n2. Spektra atom gas lain jauh lebih rumit, tetapi sekali lagi bilangan gelombangnya juga dapat diungkapkan sebagai perbedaan dua suku.

b. Teori Bohr

Di akhir abad 19, fisikawan mengalami kesukaran dalam memahami hubungan antara panjang gelombang radiasi dari benda yang dipanaskan dan intesitasnya. Terdapat perbedaan yang besar antara prediksi berdasarkan teori elektromagnetisme dan hasil percobaan. Fisikawan Jerman Max Karl Ludwig Planck (1858-1947) berusaha menyelesaikan masalahyang telah mengecewakan fisikawan tahun-tahun itu dengan mengenalkan hipotesis baru yang kemudian disebut dengan hipotesis kuantum (1900).

Berdasarkan hipotesisnya, sistem fisik tidak dapat memiliki energi sembarang tetapi hanya diizinkan pada nilai-nilai tertentu. Dengan radiasi termal, yakni radiasi energi gelombang elektromagnetik dari zat, gelombang elektromagnetik dengan frekuensi ν dari permukaan padatan akan dihasilkan dari suatu osilator yang berosilasi di permukaan padatan pada frekuensi tersebut. Berdasarkan hipotesis Planck, energi osilator ini hanya dapat memiliki nilai diskontinyu sebagaimana diungkapkan dalam persamaan berikut.

ε=nhν(n = 1, 2, 3,….) … (2.2)

n adalah bilangan bulat positif dan h adalah tetapan, 6,626 x 10-34 J s, yang disebut dengan tetapan Planck.

Ide baru bahwa energi adalah kuantitas yang diskontinyu tidak dengan mudah diterima komunitas ilmiah waktu itu. Planck sendiri menganggap ide yang ia usulkan hanyalah hipotesis yang hanya diperlukan untuk menyelesaikan masalah radiasi dari padatan. Ia tidak bertjuan meluaskan hipotesisnya menjadi prinsip umum.

Fenomena emisi elektron dari permukaan logam yang diradiasi cahaya (foto-iradiasi) disebut dengan efek fotolistrik. Untuk logam tertentu, emisi hanya akan terjadi bila frekuensi sinar yang dijatuhkan di atas nilai tertentu yang khas untuk logam tersebut. Alasan di balik gejala ini waktu itu belum diketahui. Einstein dapat menjelaskan fenomena ini dengan menerapkan hipotesis kuantum pada efek fotoelektrik (1905). Sekitar waktu itu, ilmuwan mulai percaya bahwa hipotesis kuantum merupakan prinsip umum yang mengatur dunia mikroskopik.

Fisikawan Denmark Niels Hendrik David Bohr (1885-1962) berusaha mengkombinasikan hipotesis kunatum Planck dengan fisika klasik untuk menjelaskan spektra atom yang diskontinyu. Bohr membuat beberapa asumsi seperti diberikan di bawah ini dan di Gambar 2.3.

Teori Bohr

  1. Elektron dalam atom diizinkan pada keadaan stasioner tertentu. Setiap keadaan stasioner berkaitan dengan energi tertentu.
  2. Tidak ada energi yang dipancarkan bila elektron berada dalam keadaan stasioner ini. Bila elektron berpindah dari keadaan stasioner berenergi tinggi ke keadaan stasioner berenergi lebih rendah, akan terjadi pemancaran energi. Jumlah energinya, h ν, sama dengan perbedaan energi antara kedua keadaan stasioner tersebut.
  3. Dalam keadaan stasioner manapun, elektron bergerak dalam orbit sirkular sekitar inti.
  4. Elektron diizinkan bergerak dengan suatu momentum sudut yang merupakan kelipatan bilangan bulat h/2π, yakni

mvr = n(h/2π), n = 1, 2, 3,. … (2.3)

Energi elektron yang dimiliki atom hidrogen dapat dihitung dengan menggunakan hipotesis ini. Di mekanika klasik, gaya elektrostatik yang bekerja pada elektron dan gaya sentrifugal yang di asilkan akan saling menyetimbangkan. Jadi,

e2/4πε0r2 = mv2/r … (2.4)

Dalam persamaan 2.3 dan 2.4, e, m dan v adalah muatan, massa dan kecepatan elektron, r adalah jarak antara elektron dan inti, dan ε0 adalah tetapan dielektrik vakum, 8,8542 x 10-2 C2 N-1 m2.

Latihan 2.4 Jari-jari orbit elektron dalam hidrogen

Turunkan persamaan untuk menentukan jari-jari orbit r elektron dalam atom hidrogen dari persamaan 2.3 dan 2.4. Jelaskan makna persamaan yang anda turunkan.

Jawab: mvr = nh/2π dapat diubah menjadi v = nh/2πmr. Dengan mensubstitusikan ini ke persamaan 2.4, anda akan mendapatkan persamaan: e2/4πε0r2 = mn2h2/4π2m2r3

Jadi r = n2ε0h2/(2π)2me2, n = 1, 2, 3,… (2.5) Persamaan 2.5 menunjukkan batasan bahwa jari-jari elektron diizinkan pada nilai tertentu saja (diskontinyu). Di sini n disebut bilangan kuantum.

Jari-jari r dapat diungkapan dalam persamaan r = n2aB, n = 1, 2, 3,… (2.6) Dalam persamaan ini, aB adalah jari-jari minimum bila n = 1. Nilai ini, 5,2918 x 10-11 m, disebut dengan jari-jari Bohr.


E = mv2/2 – e2/4πε0r … (2.7)

Latihan 2.5 Energi elektron dalam atom hidrogen.

Dengan menggunakan persamaan 2.3 dan 2.4, turunkan persamaan yang tidak mengandiung suku v untuk mengungkapkan energi elektron dalam atom hidrogen.

Jawab: Persamaan 2.4 dapat diubah menjadi mv2 = e2/4πε0r. Dengan mensubstitusikan persamaan ini kedalam persamaan 2.7, anda dapat mendapatkan persamaan berikut setelah penyusunan ulang:

E = -me4/8ε02n2h2ã€n = 1 ,2 ,3… (2.8)

Jelas energi elektron akan diskontinyu, masing-masing ditentukan oleh nilai n.

Alasan mengapa nilai E negatif adalah sebagai berikut. Energi elektron dalam atom lebih rendah daripada elektron yang tidak terikat pada inti. Elektron yang tidak terikat inti disebut elektron bebas. Keadaan stasioner paling stabil elektron akan berkaitan dengan keadaan dengan n = 1. Dengan meningkatnya n, energinya menurun dalam nilai absolutnya dan menuju nol.

c. Spektra atom hidrogen

Menurut teori Bohr, energi radiasi elektromagnetik yang dipancarkan atom berkaitan dengan perbedaan energi dua keadaan stationer i dan j. Jadi,

ΔE = hν = │Ej – Ej│= (2π2me4/ε02h2 )ï¼»(1/ni2 ) -(1/nj2 )ï¼½ nj > ni (2.9)

Bilangan gelombang radiasi elektromagnetik diberikan oleh:

ν = me4/8ε02n2h3)ï¼»(1/ni2 ) -(1/nj2 )ï¼½ (2.10)

Suku tetapan yang dihitung untuk kasus nj = 2 dan ni = 1 didapatkan identik dengan nilai yang didapatkan sebelumnya oelh Rydberg untuk atom hidrogen (lihat persamaan 2.1). Nilai yang secara teoritik didapatkan oleh Bohr (1,0973 x 10-7 m -1) disebut dengan konstanta Rydberg R. Deretan nilai frekuensi uang dihitung dengan memasukkan nj = 1, 2, 3, … berkaitan dengan frekuensi radiasi elektromagnetik yang dipancarkan elektron yang kembali dari keadaan tereksitasi ke tiga keadaan stasioner, n = 1, n =2 dan n = 3. Nilai-nilai didapatkan dengan perhitungan adalah nilai yang telah didapatkan dari spektra atom hidrogen. Ketiga deret tersebut berturut-turut dinamakan deret Lyman, Balmer dan Paschen. Ini mengindikasikan bahwa teori Bohr dapat secara tepat memprediksi spektra atom hidrogen. Spektranya dirangkumkan di Gambar 2.4.

d. Hukum Moseley

Fisikawan Inggris Henry Gwyn Jeffreys Moseley (1887-1915) mendapatkan, dengan menembakkan elektron berkecepatan tinggi pada anoda logam, bahwa frekuensi sinar-X yang dipancarkan khas bahan anodanya. Spektranya disebut dengan sinar-X karakteristik. Ia menginterpretasikan hasilnya dengan menggunakan teori Bohr, dan mendapatkan bahwa panjang gelombang λ sinar- X berkaitan dengan muatan listrik Z inti. Menurut Moseley, terdapat hubungan antara dua nilai ini (hukum Moseley; 1912).

1/λ = c(Z – s)2 … (2.11)

c dan s adalah tetapan yang berlaku untuk semua unsur, dan Z adalah bilangan bulat.

Bila unsur-unsur disusun dalam urutan sesuai dengan posisinya dalam tebel periodik (lihat bab 5), nilai Z setiap unsur berdekatan akan meningkat satu dari satu unsur ke unsur berikutnya. Moseley dengan benar menginterpretasikan nilai Z berkaitan dengan muatan yang dimiliki inti. Z tidak lain adalah nomor atom.

Latihan 2.6 Perkiraan nomor atom (hukum Moseley)

Didapatkan bahwa sinar-X khas unsur yang tidak diketahui adalah 0,14299 x 10-9 m. Panjang gelombang dari deret yang sama sinar-X khas unsur Ir (Z = 77) adalah 0,13485 x 10-9 m. Dengan asumsi s = 7,4, perkirakan nomor atom unsur yang tidak diketahui tersebut.

Jawab: Pertama perkirakan √c dari persamaan (2.1).

[1/0,13485x10-9(m)]1/2= √ c. (77 x 7.4) = 69,6 √c; jadi √c = 1237,27, maka

[1/0,14299x10-9(m)]= 1237 (z x 7.4) dan didapat z = 75

Berbagai unsur disusun dalam urutan sesuai dengan nomor atom sesuai hukum Moseley. Berkat hukum Moseley, masalah lama (berapa banyak unsur yang ada di alam?) dapat dipecahkan. Ini merupakan contoh lain hasil dari teori Bohr.

e. Keterbatasan teori Bohr

Keberhasilan teori Bohr begitu menakjubkan. Teori Bohr dengan sangat baik menggambarkan struktur atom hidrogen, dengan elektron berotasi mengelilingi inti dalam orbit melingkar. Kemudian menjadi jelas bahwa ada keterbatasan dalam teori ini. Seetelah berbagai penyempurnaan, teori Bohr mampu menerangkankan spektrum atom mirip hidrogen dengan satu elektron seperti ion helium He+. Namun, spektra atom atom poli-elektronik tidak dapat dijelaskan. Selain itu, tidak ada penjelasan persuasif tentang ikatan kimia dapat diperoleh. Dengan kata lain, teori Bohr adalah satu langkah ke arah teori struktur atom yang dapat berlaku bagi semua atom dan ikatan kimia. Pentingnya teori Bohr tidak dapat diremehkan karena teori ini dengan jelas menunjukkan pentingnya teori kunatum untuk memahami struktur atom, dan secara lebih umum struktur materi.

BAB I :Lahirnya kimia dan komponen materi

Stoikiometri

a. Tahap awal stoikiometri

Di awal kimia, aspek kuantitatif perubahan kimia, yakni stoikiometri reaksi kimia, tidak mendapat banyak perhatian. Bahkan saat perhatian telah diberikan, teknik dan alat percobaan tidak menghasilkan hasil yang benar.

Salah satu contoh melibatkan teori flogiston. Flogistonis mencoba menjelaskan fenomena pembakaran dengan istilah “zat dapat terbakar”. Menurut para flogitonis, pembakaran adalah pelepasan zat dapat etrbakar (dari zat yang terbakar). Zat ini yang kemudian disebut ”flogiston”. Berdasarkan teori ini, mereka mendefinisikan pembakaran sebagai pelepasan flogiston dari zat terbakar. Perubahan massa kayu bila terbakar cocok dengan baik dengan teori ini. Namun, perubahan massa logam ketika dikalsinasi tidak cocok dengan teori ini. Walaupun demikian flogistonis menerima bahwa kedua proses tersebut pada dasarnya identik. Peningkatan massa logam terkalsinasi adalah merupakan fakta. Flogistonis berusaha menjelaskan anomali ini dengan menyatakan bahwa flogiston bermassa negatif.

Filsuf dari Flanders Jan Baptista van Helmont (1579-1644) melakukan percobaan “willow” yang terkenal. Ia menumbuhkan bibit willow setelah mengukur massa pot bunga dan tanahnya. Karena tidak ada perubahan massa pot bunga dan tanah saat benihnya tumbuh, ia menganggap bahwa massa yang didapatkan hanya karena air yang masuk ke bijih. Ia menyimpulkan bahwa “akar semua materi adalah air”. Berdasarkan pandangan saat ini, hipotesis dan percobaannya jauh dari sempurna, tetapi teorinya adalah contoh yang baik dari sikap aspek kimia kuantitatif yang sedang tumbuh. Helmont mengenali pentingnya stoikiometri, dan jelas mendahului zamannya.

Di akhir abad 18, kimiawan Jerman Jeremias Benjamin Richter (1762-1807) menemukan konsep ekuivalen (dalam istilah kimia modern ekuivalen kimia) dengan pengamatan teliti reaksi asam/basa, yakni hubungan kuantitatif antara asam dan basa dalam reaksi netralisasi. Ekuivalen Richter, atau yang sekarang disebut ekuivalen kimia, mengindikasikan sejumlah tertentu materi dalam reaksi. Satu ekuivalen dalam netralisasi berkaitan dengan hubungan antara sejumlah asam dan sejumlah basa untuk mentralkannya. Pengetahuan yang tepat tentang ekuivalen sangat penting untuk menghasilkan sabun dan serbuk mesiu yang baik. Jadi, pengetahuan seperti ini sangat penting secara praktis.

Pada saat yang sama Lavoisier menetapkan hukum kekekalan massa, dan memberikan dasar konsep ekuivalen dengan percobaannya yang akurat dan kreatif. Jadi, stoikiometri yang menangani aspek kuantitatif reaksi kimia menjadi metodologi dasar kimia. Semua hukum fundamental kimia, dari hukum kekekalan massa, hukum perbandingan tetap sampai hukum reaksi gas semua didasarkan stoikiometri. Hukum-hukum fundamental ini merupakan dasar teori atom, dan secara konsisten dijelaskan dengan teori atom. Namun, menarik untuk dicatat bahwa, konsep ekuivalen digunakan sebelum teori atom dikenalkan.

b. Massa atom relatif dan massa atom

Dalton mengenali bahwa penting untuk menentukan massa setiap atom karena massanya bervariasi untuk setiap jenis atom. Atom sangat kecil sehingga tidak mungkin menentukan massa satu atom. Maka ia memfokuskan pada nilai relatif massa dan membuat tabel massa atom (gambar 1.3) untuk pertamakalinya dalam sejarah manusia. Dalam tabelnya, massa unsur teringan, hidrogen ditetapkannya satu sebagai standar (H = 1). Massa atom adalah nilai relatif, artinya suatu rasio tanpa dimensi. Walaupun beberapa massa atomnya berbeda dengan nilai modern, sebagian besar nilai-nilai yang diusulkannya dalam rentang kecocokan dengan nilai saat ini. Hal ini menunjukkan bahwa ide dan percobaannya benar.


Kemudian kimiawan Swedia Jons Jakob Baron Berzelius (1779-1848) menentukan massa atom dengan oksigen sebagai standar (O = 100). Karena Berzelius mendapatkan nilai ini berdasarkan analisis oksida, ia mempunyai alasan yang jelas untuk memilih oksigen sebagai standar. Namun, standar hidrogen jelas lebih unggul dalam hal kesederhanaannya. Kini, setelah banyak diskusi dan modifikasi, standar karbon digunakan. Dalam metoda ini, massa karbon 12C dengan 6 proton dan 6 neutron didefinisikan sebagai 12,0000. Massa atom dari suatu atom adalah massa relatif pada standar ini. Walaupun karbon telah dinyatakan sebagai standar, sebenarnya cara ini dapat dianggap sebagai standar hidrogen yang dimodifikasi.

d. Kuantitas materi dan mol

Metoda kuantitatif yang paling cocok untuk mengungkapkan jumlah materi adalah jumlah partikel seperti atom, molekul yang menyusun materi yang sedang dibahas. Namun, untuk menghitung partikel atom atau molekul yang sangat kecil dan tidak dapat dilihat sangat sukar. Alih-alih menghitung jumlah partikel secara langsung jumlah partikel, kita dapat menggunakan massa sejumlah tertentu partikel. Kemudian, bagaimana sejumlah tertentu bilangan dipilih? Untuk

menyingkat cerita, jumlah partikel dalam 22,4 L gas pada STP (0℃, 1atm) dipilih sebagai jumlah standar. Bilangan ini disebut dengan bilangan Avogadro. Nama bilangan Loschmidt juga diusulkan untuk menghormati kimiawan Austria Joseph Loschmidt (1821-1895) yang pertama kali dengan percobaan (1865).

Sejak 1962, menurut SI (Systeme Internationale) diputuskan bahwam dalam dunia kimia, mol digunakan sebagai satuan jumlah materi. Bilangan Avogadro didefinisikan jumlah atom karbon dalam 12 g 126C dan dinamakan ulang konstanta Avogadro.

Ada beberapa definisi “mol”:

(i) Jumlah materi yang mengandung sejumlah partikel yang terkandung dalam 12 g 12C. (ii) satu mol materi yang mengandung sejumlah konstanta Avogadro partikel.

(iii) Sejumlah materi yang mengandung 6,02 x 1023 partikel dalam satu mol.

e. Satuan massa atom (sma)

Karena standar massa atom dalam sistem Dalton adalah massa hidrogen, standar massa dalam SI tepat 1/12 massa 12C. Nilai ini disebut dengan satuan massa atom (sma) dan sama dengan 1,6605402 x 10–27 kg dan D (Dalton) digunakan sebagai simbolnya. Massa atom didefinisikan sebagai rasio rata-rata sma unsur dengan distribusi isotop alaminya dengan 1/12 sma 12C.