Spektroskopi

Spektroskopi

dikutib dari: id.wikipedia.org/wiki/Spektroskopi
penulis: syawal

Spektroskopi
adalah ilmu yang mempelajari materi dan atributnya berdasarkan cahaya, suara atau partikel yang dipancarkan, diserap atau dipantulkan oleh materi tersebut. Spektroskopi juga dapat didefinisikan sebagai ilmu yang mempelajari interaksi antara cahaya dan materi. Dalam catatan sejarah, spektroskopi mengacu kepada cabang ilmu dimana "cahaya tampak" digunakan dalam teori-teori struktur materi serta analisa kualitatif dan kuantitatif. Dalam masa modern, definisi spektroskopi berkembang seiring teknik-teknik baru yang dikembangkan untuk memanfaatkan tidak hanya cahaya tampak, tetapi juga bentuk lain dari radiasi elektromagnetik dan non-elektromagnetik seperti gelombang mikro, gelombang radio, elektron, fonon, gelombang suara, sinar x dan lain sebagainya.
Spektroskopi umumnya digunakan dalam kimia fisik dan kimia analisis untuk mengidentifikasi suatu substansi melalui spektrum yang dipancarkan atau yang diserap. Alat untuk merekam spektrum disebut spektrometer. Spektroskopi juga digunakan secara intensif dalam astronomi dan penginderaan jarak jauh. Kebanyakan teleskop-teleskop besar mempunyai spektrograf yang digunakan untuk mengukur komposisi kimia dan atribut fisik lainnya dari suatu objek astronomi atau untuk mengukur kecepatan objek astronomi berdasarkan pergeseran Doppler garis-garis spektral.
salah satu jenis spektroskopi adalah spektroskopi infra merah (IR). spektroskopi ini didasarkan pada vibrasi suatu molekul.

Spektroskopi inframerah merupakan suatu metode yang mengamati interaksi molekul dengan radiasi elektromagnetik yang berada pada daerah panjang gelombang 0.75 – 1.000 µm atau pada bilangan gelombang 13.000 – 10 cm-1.

Dasar Teori

Metode spektroskopi inframerah merupakan suatu metode yang meliputi teknik serapan (absorption), teknik emisi (emission), teknik fluoresensi (fluorescence). Komponen medan listrik yang banyak berperan dalam spektroskopi umumnya hanya komponen medan listrik seperti dalam fenomena transmisi, pemantulan, pembiasan, dan penyerapan. Penemuan infra merah ditemukan pertama kali oleh William Herschel pada tahun 1800. Penelitian selanjutnya diteruskan oleh Young, Beer, Lambert dan Julius melakukan berbagai penelitian dengan menggunakan spektroskopi inframerah. Pada tahun 1892 Julius menemukan dan membuktikan adanya hubungan antara struktur molekul dengan inframerah dengan ditemukannya gugus metil dalam suatu molekul akan memberikan serapan karakteristik yang tidak dipengaruhi oleh susunan molekulnya. Penyerapan gelombang elektromagnetik dapat menyebabkan terjadinya eksitasi tingkat-tingkat energi dalam molekul. Dapat berupa eksitasi elektronik, vibrasi, atau rotasi. Rumus yang digunakan untuk menghitung besarnya energi yang diserap oleh ikatan pada gugus fungsi adalah:
  • E = h.ν = h.C /λ = h.C / v
  • E = energi yang diserap
  • h = tetapan Planck = 6,626 x 10-34 Joule.det
  • v = frekuensi
  • C = kecepatan cahaya = 2,998 x 108 m/det
  • λ = panjang gelombang
  • ν = bilangan gelombang
Berdasarkan pembagian daerah panjang gelombang (Tabel 1), sinar inframerah dibagi atas tiga daerah yaitu:
  • a. Daerah infra merah dekat
  • b. Daerah infra merah pertengahan
  • c. Daerah infra merah jauh
Tabel 1. Daerah panjang gelombang
Jenis Panjang gelombang Interaksi Bilangan gelombang
Sinar gamma <> Emisi Inti
sinar-X 0,01 - 100 A Ionisasi Atomik
Ultra ungu (UV) jauh 10-200 nm Transisi Elektronik
Ultra ungu (UV) dekat 200-400 nm Transisi Elektronik
sinar tampak (spektrum optik) 400-750 nm Transisi Elektronik 25.000 - 13.000 cm-1
Inframerah dekat 0,75 - 2,5 µm Interaksi Ikatan 13.000 - 4.000 cm-1
Inframerah pertengahan 2,5 - 50 µm Interaksi Ikatan 4.000 - 200 cm-1
Inframerah jauh 50 - 1.000 µm Interaksi Ikatan 200 - 10 cm-1
Gelombang mikro 0,1 - 100 cm serapan inti 10 - 0,01 cm-1
Gelombang radio 1 - 1.000 meter Serapan Inti

Dari pembagian daerah spektrum elektromagnetik tersebut di atas, daerah panjang gelombang yang digunakan pada alat spektroskopi inframerah adalah pada daerah inframerah pertengahan, yaitu pada panjang gelombang 2,5 – 50 µm atau pada bilangan gelombang 4.000 – 200 cm-1 . Daerah tersebut adalah cocok untuk perubahan energi vibrasi dalam molekul. Daerah inframerah yang jauh (400-10cm-1, berguna untuk molekul yang mengandung atom berat, seperti senyawa anorganik tetapi lebih memerlukan teknik khusus percobaan.
Metode Spektroskopi inframerah ini dapat digunakan untuk mengidentifikasi suatu senyawa yang belum diketahui,karena spektrum yang dihasilkan spesifik untuk senyawa tersebut. Metode ini banyak digunakan karena:
  • a. Cepat dan relatif murah
  • b. Dapat digunakan untuk mengidentifikasi gugus fungsional dalam molekul (Tabel 2)
  • c. Spektrum inframerah yang dihasilkan oleh suatu senyawa adalah khas dan oleh karena itu dapat menyajikan sebuah fingerprint (sidik jari) untuk senyawa tersebut.
Tabel 2. Serapan Khas Beberapa Gugus fungsi
Gugus Jenis Senyawa Daerah Serapan (cm-1)
C-H alkana 2850-2960, 1350-1470
C-H alkena 3020-3080, 675-870
C-H aromatik 3000-3100, 675-870
C-H alkuna 3300
C=C alkena 1640-1680
C=C aromatik (cincin) 1500-1600
C-O alkohol, eter, asam karboksilat, ester 1080-1300
C=O aldehida, keton, asam karboksilat, ester 1690-1760
O-H alkohol, fenol(monomer) 3610-3640
O-H alkohol, fenol (ikatan H) 2000-3600 (lebar)
O-H asam karboksilat 3000-3600 (lebar)
N-H amina 3310-3500
C-N amina 1180-1360
-NO2 nitro 1515-1560, 1345-1385
0 Responses

Posting Komentar