disusun oleh: wahyu sugar ibrahim 040
a. Energi Ionisasi pertama
Bila unsur-unsur disusun sesuai dengan massa atomnya, sifat unsur atau senyawa menunjukkan keperiodikan, dan pengamatan ini berujung pada penemuan hukum periodik. Konfigurasi elektron unsur menentukan tidak hanya sifat kimia unsur tetapi juga sifat fisiknya. Keperiodikan jelas ditunjukkan sebab energi ionisasi atom secara langsung ditentukan oleh konfigurasi elektron. Energi ionisasi didefinisikan sebagai kalor reaksi yang dibutuhkan untuk mengeluarkan elektron dari atom netral, misalnya, untuk natrium:
Na(g) →Na+(g) + e- (5.1)
Energi ionisasi pertama, energi yang diperlukan untuk memindahkan elektron pertama, menunjukkan keperodikan yang sangat jelas sebagaimana terlihat di gambar 5.1. Untuk periode manapun, energi ionisasi meningkat dengan meningkatnya nomor atom dan mencapai maksium pada gas mulia. Daam golongan yang sama energi ionisasi menurun dengan naiknya nomor atom. Kecenderungan seperti ini dapat dijelaskan dengan jumlah elektron valensi, muatan inti, dan jumlah elektron dalam.
Energi ionisasi kedua dan ketiga didefinisikan sebagai energi yang diperlukan untuk memindahkan elektron kedua dan ketiga.
Gambar 5.1 Energi ionisasi pertama atom. Untuk setiap perioda, energi ionisai minimum untuk logam alkali dan maksimumnya untuk gas mulia.
b. Afinitas elektron dan keelektronegatifan
Afinitas elektron didefinisikan sebagai kalor reaksi saat elektron ditambahkan kepada atom netral gas, yakni dalam reaksi.
F(g) + e¯ → F¯(g) (5.2)
Nilai positif mengindikasikan reaksi eksoterm, negatif menunjukkan reaksi endoterm. Karena tidak terlalu banyak atom yang dapat ditambahi elektron pada fasa gas, data yang ada terbatas jumlahnya dibandingkan jumlah data untuk energi ionisasi. Tabel 5.6 menunjukkan bahwa afinitas elektron lebih besar untuk non logam daripada untuk logam.
Tabel 5.6 Afinitas elektron atom.
H | 72,4 | C | 122,5 | F | 322,3 |
---|---|---|---|---|---|
Li | 59, | O | 141,8 | Cl | 348,3 |
Na | 54,0 | P | 72,4 | Br | 324,2 |
K | 48,2 | S | 200,7 | I | 295,2 |
Besarnya kenegativan(elektron) yang didefinisikan dengan keelektronegatifan (Tabel 5.7), yang merupakan ukuran kemampuan atom mengikat elektron. Kimiawan dari Amerika Robert Sanderson Mulliken (1896-1986) mendefinisikan keelektronegativan sebanding dengan rata-rata aritmatik energi ionisasi dan afinitas elektron.
Tabel 5.7 Keelektronegativitan unsur golongan utama elements (Pauling)
Pauling mendefinisikan perbedaan keelektronegativan antara dua atom A dan B sebagai perbedaan energi ikatan molekul diatomik AB, AA dan BB. Anggap D(A-B), D(A-A) dan D(B-B) adalah energi ikatan masing-masing untuk AB, AA dan BB. D(A-B) lebih besar daripada rata-rata geometri D(A-A) dan D(B-B). Hal ini karena molekul hetero-diatomik lebih stabil daripada molekul homo-diatomik karena kontribusi struktur ionik. Akibatnya, ∆(A-B), yang didefinisikan sebagai berikut, akan bernilai positif:
(A-B) = D(A-B) -√D(A-A)D(B-B) > 0 (5.3)
(A-B) akan lebih besar dengan membesarnya karakter ionik. Dengan menggunakan nilai ini, Pauling mendefinisikan keelektronegativan x sebagai ukuran atom menarik elektron.
|xA -xB|= √D(A-B) (5.4)
xA dan xB adalah keelektronegativan atom A dan B.
Apapun skala keelektronegativan yang dipilih, jelas bahwa keelektronegativan meningkat dari kiri ke kanan dan menurun dari atas ke bawah. Keelketroegativan sangat bermanfaat untuk memahami sifat kimia unsur.
Informasi lain yang bermanfaat dapat disimpulkan dari Tabel 5.7. Perbedaan keelektronegativan antara dua atom yang berikatan, walaupun hanya semi kuantitatif, berhubungan erat dengan sifat ikatan kimia seperti momen dipol dan energi ikatan..
Misalnya ada distribusi muatan yang tidak sama dalam ikatan A-B (xA > xB). Pasangan muatan positif dan negatif ±q yang dipisahkan dengan jarak r akan membentuk dipol (listrik).
Arah dipol dapat direpresentasikan dengan panah yang mengarah ke pusat muatan negatif dengan awal panah berpusat di pusat muatan positif. Besarnya dipol, rq, disebut momen dipol. Momen dipol adalah besaran vektor dan besarnya adalah µ dan memiliki arah.
Besarnya momen dipol dapat ditentukan dengan percobaan tetapi arahnya tidak dapat. Momen dipol suatu molekul (momen dipol molekul) adalah resultan vektor momen dipol ikatan-ikatan yang ada dalam molekul. Bila ada simetri dalam molekul, momen dipol ikatan yang besar dapat menghilangkan satu sama lain sehingga momen dipol molekul akan kecil atau bahkan nol.
c. Bilangan oksidasi atom
Terdapat hubungan yang jelas antara bilangan oksidasi (atau tingkat oksidasi) atom dan posisinya dalam tabel periodik. Bilangan oksidasi atom dalam senyawa kovalen didefinisikan sebagai muatan imajiner atom yang akan dimiliki bila elektron yang digunakan bersama dibagi sama rata antara atom yang berikatan (kalau atom yang berikatan sama) atau diserahkan semua ke atom yang lebih kuat daya tariknya (kalau yang berikatan atom yang berbeda).
(1) UNSUR GOLONGAN UTAMA
Untuk unsur golongan utama, bilangan oksidasi dalam banyak kasus adalah jumlah elektron yang akan dilepas atau diterima untuk mencapai konfigurasi elektron penuh, ns2np6 (kecuali untuk periode pertama) atau konfigurasi elektron nd10 (gambar 5.2).
Hal ini jelas untuk unsur-unsur periode yang rendah yang merupakan anggota golongan 1, 2 dan 13-18. Untuk periode yang lebih besar, kecenderungannya memiliki bilangan oksidasi yang berhubungan dengan konfigurasi elektron dengan elektron ns dipertahankan dan elektron np akan dilepas. Misalnya, timah Sn dan timbal Pb, keduanya golongan 14, memiliki bilangan oksidasi +2 dengan melepas elektron np2 tetapi mempertahankan elektron ns2, selain bilangan oksidasi +4. Alasan yang sama dapat digunakan untuk adanya fakta bahwa fosfor P dan bismut Bi, keduanya golongan 15 dengan konfigurasi elektron ns2np3, memilki bilangan oksidasi +3 dan +5.
Umumnya, pentingnya bilangan oksidasi dengan elektron ns2 dipertahankan akan menjadi semakin penting untuk periode yang lebih besar. Untuk senyawa nitrogen dan fosfor, bilangan oksidasi +5 dominan, sementara untuk bismut yang dominan adalah +3 dan bilangan oksidasi +5 agak jarang.
Unsur logam dan semilogam (silikon Si atau germanium Ge) jarang memiliki nilai bilangan oksidasi negatif, tetapi bagi non logam fenomena ini umum dijumpai. Dalam hidrida nitrogen dan fosfor, NH3 dan PH3, bilangan oksidasi N dan P adalah–3. Semakin tinggi periode unsur, unsur akan kehilangan sifat ini dan bismut Bi tidak memiliki bilangan oksidasi negatif. Di antara unsur golongan 16, bilangan oksidasi-2 dominan seperti dalam kasus oksigen O. Kecenderungan ini lagi-lagi akan menurun untuk unsur-unsur di periode lebih tinggi. Misalkan oksigen hanya memiliki bilangan oksidasi negatif, tetapi S memiliki bilangan oksidasi positif seperti +4 dan +6 yang juga signifikan.
(2) UNSUR TRANSISI
Walaupun unsur transisi memiliki beberapa bilangan oksidasi, keteraturan dapat dikenali. Bilangan oksidasi tertinggi atom yang memiliki lima elektron yakni jumlah orbital d berkaitan dengan keadaan saat semua elektron d (selain elektron s) dikeluarkan. Jadi, dalam kasus skandium dengan konfigurasi elektron (n-1)d1ns2, bilangan oksidasinya 3. Mangan dengan konfigurasi (n-1)d5ns2, akan berbilangan oksidasi maksimum +7.
Bila jumlah elektron d melebihi 5, situasinya berubah. Untuk besi Fe dengan konfigurasi elektron (n-1)d6ns2, bilangan oksidasi utamanya adalah +2 dan +3. Sangat jarang ditemui bilangan oksidasi +6. Bilangan oksidasi tertinggi sejumlah logam transisi penting seperti kobal Co, Nikel Ni, tembaga Cu dan zink Zn lebih rendah dari bilangan oksidasi atom yang kehilangan semua elektron (n–1)d dan ns-nya. Di antara unsur-unsur yang ada dalam golongan yang sama, semakin tinggi bilangan oksidasi semakin penting untuk unsur-unsur pada periode yang lebih besar.
d. Ukuran atom dan ion
Ketika Meyer memplotkan volume atom yang didefinisikan sebagai volume 1 mol unsur tertentu (mass atomik/kerapatan) terhadap nomor atom dia mendapatkan plot yang berbentuk gigi gergaji. Hal ini jelas merupakan bukti bahwa volume atom menunjukkan keperiodikan. Karena agak sukar menentukan volume atom semua unsur dengan standar yang identik, korelasi ini tetap kualitatif. Namun, kontribusi Meyer dalam menarik perhatian adanya keperiodikan ukuran atom pantas dicatat.
Masih tetap ada beberapa tafsir ganda bila anda ingin menentukan ukuran atom sebab awan elektron tidak memiliki batas yang jelas. Untuk ukuran atom logam, kita dapat menentukan jari-jari atom dengan membagi dua jarak antar atom yang diukur dengan analisis difraksi sinar-X. Harus dinyatakan bahwa nilai ini bergantung pada bentuk kristal (misalnya kisi kubus sederhana atau kubus berpusat muka, dsb.)dan hal ini akan menghasilkan tafsir ganda itu. Masalah yang sama ada juga dalam penentuan jari-jari ionik yang ditentukan dengan analisis difraksi sinar-X kristal ion.
Keperiodikan umum yang terlihat di gambar 5.3 yang menunjukkan kecenderungan jari-jari atom dan ion. Misalnya, jari-jari kation unsur seperiode akan menurun dengan meningkatnya nomor atom. Hal ini logis karena muatan inti yang semakin besar akan menarik elektron lebih kuat. Untuk jari-jari ionik, semakin besar periodenya, semakin besar jari-jari ionnya.
Posting Komentar